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An analytic method is presented which by taking advantage of integrability conditions 
decides if a system of equations, in which the functions and their partial derivatives have only 
positive integer exponents, allows solutions and leads to new equations of lower order. The 
method is especially striking if the equations are overdetermined and can be implemented on a 
computer. An application to the full vacuum field equations of general relativity in the 
presence of a Killing vector leads to the known formulation with potentials. 0 1985 Academic 

Press, Inc. 

1. INTRODUCTION 

The motivation for developing an algorithm which decides if an overdetermined 
system of two equations for one function f has any solutions is to find new exact 
solutions of a system of field equations. Because these equations were too complex 
to be solved in general, additional assumptions had to be made which were strong 
enough to calculate the remaining free functions and were weak enough not to 
exclude all interesting cases and possible new solutions. The method considered fills 
in this gap because additional constraints in the form of differential equations need 
not have such a simple form as f(x) = const or f (x, y),, = 0 to determine whether 
the system + additional constraint has any solution. To determine if there are 
solutions the algorithm describes how to generate a new equation which is in some 
sense easier than the most difficult one of the system (system + add. constr.). So this 
most difficult one is replaced by the new easier equation and the next easier 
equation is produced which replaces the previous equation and so on. 

What shall be meant here by easy or difficult? If the system consists of ordinary 
differential equations then the degree of difficulty of an equation depends on the 
highest-order derivative off; if they are equal in both equations then the highest 
power of the highest derivatives is decisive. If more than one variable occurs then 
their order must be defined, e.g. ( y, x). So one equation is more difficult if it has 
higher y-derivatives or if their highest y-derivatives are equal and have greater x- 
derivatives of the highest y-derivatives. If they are also equal then the highest power 
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of the highest x-derivative of the highest y-dervative is decisive. As an example, in 
the following line the terms become easier from the left to the right: 

f . f,,dy; fyy; fyxsJf:x; fix; Lf:; f ,YYXX' 

A more detailed description is given in Section 2. The algorithm itself instructs how 
to derive, multiply, and substract the two temporary easiest equations in such a 
way that the most difficult term drops out and a still easier equation can replace the 
more difficult one, as is also described in Section 2. In Section 3 two examples are 
given. The stepwise procedure ends if an equation is obtained which contains 
neither f nor derivatives of J: If this equation is a condition for the variables, then 
no solution f exists. On the other hand, if the last equation is only the identity 
0 = 0, then the next-to-last equation may represent a “key equation,” meaning that 
an equation of lower order which is suitably differentiated and multiplied would 
yield the starting system. For instance, 

is a key equation for 

A full explanation of what conclusions can be drawn if the algorithm is finished is 
given in Section 4. While Section 5 concerns a gedankenexperiment dealing with a 
possible decoupling of the vacuum field equations of general relativity, in Section 6 
the computer programme corresponding to the algorithm is described. The charac- 
teristic given above makes the method quite applicable for solving Killing 
equations. In general relativity these are ten equations for four functions whose 
integrability is not guaranteed. 

2. THE ALGORITHM 

2.1. General Properties 

As a demonstration of the method, we shall deal with two equations for one 
function. This example can be easily generalized to m equations for n functions, see, 
e.g., the computer programme SPLIT in Section 6. The procedure can be divided 
into three parts, namely for algebraic, ordinary differential, and partial differential 
equations. Each part makes frequent use of the previous ones. In the general case, 
the equations must be given as sums of products of elementary functions of the 
variables and of products of arbitrary partial derivatives of the functions to be 
decoupled with positive integer exponents. For instance 5 sin(x)S,J,:,, may occur 
but sin(f) is not allowed. Further it is assumed throughout that all functions are 
sufficiently often differentiable. Because the execution involves the multiplication 
and differentiation of equations (for instance, after multiplication of an equation 
with f, a new solution is f= 0), all results obtained are necessary. 
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2.2. The Method for Algebraic Equations 

The first part is essentially the Euclidean algorithm for the determination of the 
greatest common factor of two polynomials. If the given equations for determining f 
are algebraic, that means 

P, := anfn+ ... +a,=0 (la) 

P, := b,f”+ ... +b,=O, m<n,a,b,#O (lb) 

then the more difficult one P, = 0 can be replaced by the easier equation 
P, = b, P, - a,S-“P,, because the degree of P, is always smaller than n. If P3 is 
not identical to zero then P, = 0 and P, = 0 are combined so that an equation with 
a still smaller degree is obtained and so on. The procedure is completed if a P, is 
reached, which does not contain any powers off: 

EXAMPLE 1. 

O=f3-4fZ+5f-2=P, (=(f-l)‘(f-2)) 

0=3f2-f-2=P2 (=3(f-q2+5(f-1)). 

ALGORITHM. 
0=3(f3-4f2+5f-2) 

-f(3f’-f-2) 

=3(-llf’+ 17f-6) 

+ 11(3f’-f-2) 

= 3f (4Of - 40) 

-40(3f2-f-2) 

= -SOf+ 80 

+ 2(4Of - 40) 

=o 

The result is, that 0 = 40f - 40 is a necessary and, as a test also shows, sufficient 
condition for P, = 0 and P, = 0. 

2.3. The Method for Ordinary Differential Equations (ODE) 

If one has two ODES for one function f (x), 

D, := ank(f’“‘)“+ .*. +a,,f(k)+o,k-l(f(k-‘))p+ ... + ... +a,=0 (2a) 

D, : = b,,( f (‘))m + . . . + b, = 0 (2b) 

where fCk) and f(I) are the highest derivatives of f, and n, m are the highest 
exponents offCk) respectively f(l); a,& and b,, are sums of products of elementary 
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functions of the variables off and derivatives off of an order smaller than k and 1, 
respectively; e.g., unk = ex( Sck- I))” + 5. 

Case I. k > 1. Take D, = 0 and Oik-‘) = 0 as the system to be solved and 
proceed as in Case II to get an equation with less derivatives than k, and substitute 
this equation for D, = 0. 

Case II. k = 1. Take the system as two polynomials in f@), use the algorithm 
given in Section 2.2 either to find the polynomial of lowest order in Jck) which is 
compatible with both equations and end, or to find an equation without f@) which 
therefore has less derivatives than k. 

EXAMPLE 2. 

f=f(x), 0 =f” +fy”+fx + 1 = O,( = (f’ + x)’ + (f’ + x)f ) 

O=f'2+2xf'+3f'+x2+3x=Dz(=(f'+X)2+3(f'+X)). 

ALGORITHM. 

0 = (f’2 + 2xf’ + 3f’ + x2 + 3x)’ 

-(2f’+2~+.3)(f”+f’j’+fx+ 1) 

= -2f'zf-4f'fx-2x2f-3f'f-3xf 

+2f(f'2+2xf'+3f'+x2+3x) 

=f’( 3ff’ + 3fx) 

-3f(f'2+2xf'+3f'+x2+3x) 

= 3Cgff’ + 9ff' + 9fx + Jfx' 

-(x+3)(3ff’+3fx) 

= 0. 

The result is that 0 = 3ff' + 3f x is a necessary condition and as a test shows that 
f = 0 leads to a contradiction, whereas DI = 0 = D, is satisfied by O’= f' + x. 

2.4. The Method for Partial Differential Equations (PDE) (the Actual Problem) 

For PDEs an order of the variables must be defined; e.g., f (y, x) is to be 
decoupled and y is the first and x the second variable. The two equations are 

DI := ~r(&fy+ ... +(~l*r&/ 

D2 : = b,,s ... +b,=O WI 
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and n, k, r, m, 1, s have the following meaning: a”f/ay’, a’f/ay’ are the highest y 
derivatives, and (8, k/ay%xk)f, (8 + ‘/ayVx’)S are the highest x derivatives of 
(8jay’)f and (P/ays)f, respectively; n, m are the highest exponents of 
(8 + “/ay’@ )f and (a’+ ‘/ay”ax’)f, respectively. ankr and b,. are sums of products 
of elementary functions of the variables and off and its partial derivatives with 
fewer y derivatives than r and s, respectively, or with y derivatives of the rth or sth 
order with fewer x derivatives than k and 1, respectively. E.g., 

a nkr = e 

Case I. r>s. Take D, =0 and (ar-s/dyr-s) D,=O as the system to be solved 
and proceed as in Case IT to get an equation with fewer y derivatives than r and 
substitute this for D1 = 0. 

Case II. r =s. The trick is to consider D, = 0 and D, = 0 as a system of 
ordinary differential equations for the function 8flay” and the variable x and 
proceed as in 2.3 until arflayr is eliminated. Because under 2.3 only x-derivatives are 
performed, the algorithm is finite, and a repeated application of the Cases I and II 
of 2.4 provides two equations without y derivatives which are decoupled by 2.3. If 
derivatives of more than two different variables occur, then the calculation runs 
analogously but the calculational expense grows rapidly. How the method works as 
a whole will be shown in the following two examples. 

3. Two EXAMPLES 

EXAMPLE 4. f( y, x) is to be decoupled; y is the first and x is the second 
variable. The algorithm is shown in Table I. Starting system: 

DI :=f+S,,.L=O 

D2 :=f,,+f;=O. 

So f= 0 is a necessary and, as a short consideration shows, also a sufficient con- 
dition for 

f +fy.LfL = 0 
and 

EXAMPLE 5. This example deals with a problem arising from the intention to 
find solutions of the field equations of general relativity. The example can in prin- 
ciple be solved by the methods described in 2.2-2.4, but it is too difficult to solve in 
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TABLE I 

Result of Example 4 

Algorithm 

D, : = D, - Dz.~& =f- 2ff, f,?.r = 0 

D,:= D,+D2,,2f:,=f+4J,,f;,=0 

2 3 4 : = D,,xx4f: - DI,> = 8f,,,.f,~ 
+ KLff,- 12f,.rfX,,x -Xv = 0 

D,:= Dz+Dz,xl2/kf:= 
32ff,,f?,+ KLxf::-.t., =0 

D,:= D,+D,=32f;,f:+tL,.f;+.ffr=O 

D,:= D,yr2l,-D,= -sf;,f:+f:=O 

D, := D2+D12.L=2ff,ur+f:=O 
D,:= -D,2f;x+D,f=f2-2f;,=0 
D,:=D2,,2+D,5~,=9f,f=0 

D,:= D,2f:+D29f=9f'=0 
D,:= D2,1-D,3f=O=0 

Comments 

D1 is replaced + 2 equations 
with only one y derivative. 
D, is replaced + one first 
equation without y derivative. 
D, is a provisional equation 
with the highest derivatively,. 
D, is replaced and has now 
J, as most “difficult” derivative. 
D2 is replaced by a second 
equation without y derivative. 
D2 is replaced by an equation with 
only two derivatives of X. 
Dz is now linear inx,,. 
D2 is of first order in x. 
D, is a second expression of 
first order in x. 
D2 is a polynomial. 
The algorithm finishes. 

practice, (i.e., with the computer available to the author). Therefore only a list of 
the performed calculations will be given. Only the number of terms and the “most 
difficult” derivative off(u, x, y, u) are written down. This derivative is obtained by 
taking the highest u derivative and then by choosing from these terms the highest x 
derivative, and from the remaining terms the highest y derivative, from which the 
highest u derivative is taken. In Table II f=f(u, x, y, U) is to be decoupled; 
Q = Q(x) is undetermined. Starting system: 

TABLE II 

Result of Example 5 

Terms Most difficult derivative 

7 
I 

26 
36 
40 
45 
49 
50 
68 
85 

Terms Most difficult derivative 

78 
16 
71 
45 
48 
34 

134 
142 
152 
581 
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-f,& 3 + e*YffvQu* +f: +f:” = 0. 

These examples as well as other applications show that the length of the 
expressions need not grow exponentially over many steps and that the algorithm 
has more than theoretical value. 

4. POSSIBLE RESULTS 

The algorithm ends if an equation is obtained that contains neither f nor 
derivatives off: If this equation is not an identity 0 = 0, then either no solution f of 
the starting system exists, or a condition for other functions (coefficients) appearing 
in the starting system has to be satisfied as the example shows: 

EXAMPLES 6, 7. 

f(x),&) O=f'+f+x+4 
0 = x - 2 + 3 solution 

O=f'+f+6 

O=f'+f+x+4 

O=f'+f+g 
O=g-x-4-t equationforg. 

On the other hand, if the algorithm stops because 0 = 0 is obtained, then the next- 
to-last equation may ba a “key equation” (like the equation f’+ x = 0 in Exam- 
ple 2). But even if 0 = 0 results after the first step the method gives hints for further 
integration as can be seen in Example 8. 

EXAMPLE 8. f =f(x, y): 

Because D I,y - D2,xx =O, no new equation is generated. But the new knowledge 
D I+ = 4,xx demonstrates the existence of a potential V with D, = V,,, and 
D, = V,Y. The original information D, = 0 and D2 = 0 yields V= ax + 6, a, b con- 
stant. Integration of D2 = 0 gives 

0 =f: +f,,L + ax + b 
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as the “key equation” of the starting system. This principle also works if, e.g., 
&T(x) D,,y - Dz,x = 0 but not, if for an arbitrary g(x, JJ), the relation g(x, y) D,,y - 
Dz,x = 0 ends the algorithm. 

5. THE VACUUM FIELD EQUATIONS OF GENERAL RELATIVITY 

If one would start to decouple the ten vacuum field equations 0 = Rnh of general 
relativity, the algorithm would yield the contracted Bianchi identities 

0 = G$’ + (r;, + I’;, SC) G,, (4) 

with 

G”b = R”b - ; gabR. (5) 

In its most general form Eq. (4) does not give any utilizable information, but if the 
metric has a Killing vector 5, with 

tc,;b + t b;u = 0 (6) 

then (-g) ,‘/’ = ( -g)lj2 r;, and Eq. (4) provides that 

0 = ( -g)“2 <,,G‘$‘+ ( -g)“2 &Jr:, -I- r;,d;) G”” 

= (( -d1’2 tuGub)./v 

With (( -g)‘j2 <“R),. = ( -g)‘12 (;R + ( -g)‘12 (“R;, = 0, Eq. (7) reads 

0 = (( -#’ <aR;),b. 

(7) 

(8) 

Indeed, ( -g)1’2 (YRi is expressible as a curl: 

( -g)‘/2 c”R;= _ (~‘b;~l(-g)1/2),r. (9) 

To integrate Eq. (9) for Ri = 0 by - taib( -g)ij2 = sUbrdMC,d is not the best answer 
because not all M, are relevant. By taking into consideration the natural 3 + 1 
splitting induced by t”, assured of an analogous relation as Eq. (9) in 3 + 1 for- 
mulation, and by introducing the projection tensor hab, the Levi-Civita tensor && 
(both tensors on the 3 space C,, the factor space VJG,), and the twist vector ma, 
where 

hob=gob+UaUb,Un-(-F)-1’250, 

&,bc = &dabc Ud~ d = cabEd&, cczd, 

F= LX’, 
(10) 
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one finds that 

0 rb II al = &,bmn 5”Ri td (11) 

(-F)-"' E~~=co,,,~ = 2h;R;5'. (12) 

5” is assumed to be timelike, while only the signs must be changed. The conclusion 
for vacuum is now w, = w,,. The existence of the twist potential w was already 
proved in [2]. 

With the complex potential f = F+ io and the conform transformed metric 
yab = -F/r,, the field equations finally read 

where ff,b is the Ricci tensor and ; is the covariant derivative with respect to yab. 
For more detail see [ 11. It must be mentioned that for the case of a homothetic 
vector (8) holds, but the 3 + 1 splitting does not work to introduce a twist poten- 
tial. These remarks should be an example of how the information of the structure or 
the explicit form of the integrability conditions may help find new potentials and 
formulations of the equations to be solved. 

6. THE CORRESPONDING COMPUTER PROGRAMME SPLIT 

The algorithm was implemented in FORMAC 73 because other systems like 
REDUCE II are more expensive in core and time. To run SPLIT, all functions in 
the order to be decoupled, all equations, and the number of equations must be 
given. The order of the arguments within the functions determines the sequence of 
the variables. For instance, to run Example 4, the following instructions are 
necessary: 

SPLIT: PROC OPTIONS( MAIN); 
FORMAC OPTIONS; 
LET(F# (1) = F.(Y,X); 

D# (1) = F.(Y,X) + DERIV(F.(Y,X),Y,2)*DERIV(F.(Y,X),X); 
D# (2) = DERIV(F.(Y,X),Y) + DERIV(F.(Y,X),X)**2); 

LL # = 2; CALL PTWSEP; 
PTWSEP: PROC; 

END PTWSEP; 
END SPLIT; 

Here the two (because LL# =2) equations D#(l)=O, D#(2)=0 are to be 
decoupled with respect to the one function F(Y,X). Thereby the variable Y is the 
first one with the consequences mentioned in Section 2.4. If m equations and II 
functions should be decoupled, then after some preliminary equations m - 1 
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equations without F # (1) would be generated, and out of them m - 2 equations 
without F # (2) would be generated and so on. Within this sequence every equation 
is characterized by a number according to the highest order derivatives of the 
function to be removed instantaneously, i.e., according to their degree of “dif- 
ficulty.” The two equations with the highest numbers are combined by the sub- 
routine PTWSPL, respectively, PTWNSE if the equations are algebraic, and every 
new equation is analysed by a subroutine PTWSEA until one equation with a 
lower number is generated, which will replace the more difficult of the two initial 
equations. Again the two equations with the highest numbers are combined. After 
repeated execution, eventually the function in question occurs in only one equation, 
and the next function together with the residual equations is taken. 

The possibilities of the programme become apparent in Example 5. Up to 581 
terms, the calculation was performed on a computer EC1040 without virtual 
memory, comparable to the IBM 360, and with a storage capacity of 750 k bytes 
for the programme and data and with a CPU-time of 220 s. The source code in 
FORMAC 73 consists of 340 cards. For further information please contact the 
author. 
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